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On the generation of surface waves by shear flows. Part 4 

By JOHN W. MILES 
Department of Engineering and Institute of Geophysics, University of California, 

Los Angelest 

(Received 18 December 1961) 

The transfer of energy from wind to short surface waves through the viscous 
Reynolds stress in the immediate neighbourhood of the surface is explored. 
Resonance between the Tollmien-Schlichting waves for a given wind profile 
and the free-surface waves is shown to be an important possibility. Numerical 
results are given for water wave generation by a wind having a velocity profile 
that is linear in the neighbourhood of the surface and asymptotically logarithmic. 

1. Introduction 
Four, essentially different, mechanisms for the transfer of energy from wind 

to surface waves have recently been proposed and analysed. 
( a )  Phillips (1957), assuming no interaction between surface waves and wind, 

has considered the direct action of turbulent fluctuations in pressure on the free 
surface. 

(6) Miles (1957a, 1959a) and Brooke Benjamin (1959) have considered 
energy transfer through the inviscid Reynolds stress in the critical layer (where 
wave speed equals mean wind speed) of a curved velocity profile on the assumption 
that perturbations of the turbulent Reynolds stresses are negligible. 

(c) Brooke Benjamin (1959) and Longuet-Higgins (1952, unpublished) 
have considered energy transfer through the viscous Reynolds stress in the 
immediate neighbourhood of the surface.$ 

( d )  Miles (1959 b )  has considered static or Kelvin-Helmholtz instability, modi- 
fying Kelvin’s original model to allow for variation of mean wind speed with 
distance from the surface. 

We first remark that turbulent fluctuations (in so far as they exist) are bound 
to play some role in the initial excitation of all surface waves, so that the real 
question for ( a )  is whether such a mechanism can account for the complete energy 
transfer or whether it is augmented by interaction between surface waves and 
wind (see Miles 1960 a).  Presently available data, although rather inadequate 
for any firm decisions, appear to indicate that both (a )  and ( b )  are important for 
the formation of the longer gravity waves on deep water and that ( d )  is not. 
It appears fairly certain, on the other hand, that ( d )  is important for the formation 

t Now a t  Institute of Advanced Studies, Australian National University, Canberra. 
$ It must be emphasized that, in first approximation, the energy transfer a t  the inter- 

face is through the out-of-phase component of the pressure and that energy transfer through 
the shear stress enters only in the next approximation. It was, among other things, to 
emphasize this distinction that the term ~ i s c o u s  Reynolds stress, rather than viscous stress, 
was selected and has been retained. 
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of waves on viscous liquids such as oil, the quantitative agreement between 
theory and experiment being excellent. 

None of (a), ( b )  or (d) appears adequate to explain the formation of relatively 
short waves on initially smooth water (it seems quite unlikely that any linear 
theory could prove adequate to explain their formation on rough water), and 
the aim of the following analysis is to explore the possible importance of ( c )  
for capillary and short gravity waves. We remark that this mechanism may be 
especially important in the formation of waves on rather shallow water, where 
bottom friction inhibits the formation of longer waves (Jeffreys 1926). It must 
be emphasized, however, that we shall consider only those waves that move 
downstream relative to the surface current and that we shall neglect the mean 
flow in the lower fluid. Waves moving downstream (relative to the bottom) 
more slowly than the surface current must obtain their energy from the mean flow 
in the lower fluid, probably through the viscous Reynolds stress a t  the bottom 
(Miles 1960b); however, this mechanism is likely to be important only for very 
thin films. 

The principal reasons for suspecting that turbulent fluctuations, acting alone, 
are inadequate for the generation of short water waves on initially smooth water 
are that the fluctuations at such small wavelengths are relatively weak and that 
they are convected downstream too rapidly to account (through the ‘resonance ’ 
mechanism proposed by Phillips) for the straight-crested waves that are observed. 
There can be little question, on the other hand, that turbulent fluctuations are 
responsible for the minute, random agitations of any body of water. 

We may rule out energy transfer associated with profile curvature to capillary 
waves through the consideration that this energy transfer increases roughly 
as the square of the wind speed for a $xed ratio of wave speed to wind speed, 
whereas laminar dissipation in the water increases as the cube of the wind speed 
(in contrast with gravity waves, where it varies inversely as the wind speed). 
The two would be in equilibrium if (Miles 1957a) 

pp, u2 = 4p,,kc, (1.1) 

where ,5 denotes the energy-transfer coefficient, referred to a characteristic velo- 
city U ,  pa the air density, pW the viscosity of the water, k the wave-number, and 
c the wave speed. Assuming the logarithmic profile U(y) = Ulog(y/x,), the 
maximum value of p is 3.4 (Miles 1959a). The minimum values of k and c for 
capillary waves are 2.rr/l-7cm-l and 23cm/sec, so that (1.1) implies that U 
must exceed 39cm/sec in order to overcome laminar dissipation in the water 
(assuming pa = 1.2 x 10-3 and pw = 10-2 in c.g.s. units). But if we rewrite (1.1) 
in the form 

(1.2) 

and note that c2/k cannot exceed 150 (c.g.s. units) for capillary waves and that c / U  
must exceed 3 if the profile curvature at  the critical layer is to be appreciable, 
we find that U cannot exceed 0.6 cm/sec. It follows that the equilibrium implied 
by (1.1) cannot be attained and hence that laminar dissipation necessarily 
exceeds the energy transfer associated with profile curvature. 
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In  contrast to the lower bound placed on wave speed by the requirement that 
the critical layer be a t  a sufficient elevation to guarantee appreciable profile 
curvature, the energy transfer associated with the viscous Reynolds stress 
imposes the upper bound (Brooke Benjamin 1959, (7.43) ff.) 

where U, denotes the friction velocity for the profile and va the kinematic vis- 
cosity for the air. This suggests that the inviscid and viscous Reynolds stresses 
are likely to play complementary roles in wave generation, and that the latter is 
dominant for short waves. 

We shall proceed to investigate this possibility by first (in $ 2 )  obtaining the 
equations of two-dimensional wave motion in a slightly viscous liquid of finite 
depth that is subjected to prescribed stresses at its surface. We then shall 
calculate the surface stresses produced by a parallel shear flow above the liquid 
along the lines laid down by Brooke Benjamin (1959), whose work is recapitu- 
lated in a slightly revised form in $5 3 and 4. This formulation leads to the Om- 
Sommerfeld equation, the asymptotic solution to which can be expressed in 
terms of Airy integrals and the solution to the inviscid problem. Methods appro- 
priate to the solution of the latter boundary-value problem have been discussed 
in a separate paper (Miles 1962), the results of which are recapitulated in $5. 

The development of $5 2-5 culminates in an eigenvalue equation for the com- 
plex wave speed c. Assuming the specific gravity of the upper fluid to be small, 
the solutions to this equation comprise: (1) the free-surface waves of the lower 
fluid, perturbed by the shear flow in the upper fluid, and (ii) the Tollmien- 
Schlichting waves of the upper fluid, perturbed (relative to the waves for the 
same shear flow over a rigid wall) by the motion of the lower fluid. The waves of 
class (i) are of the same general class as those considered in the aforementioned 
references (Brooke Benjamin 1959; Miles 1957a, 1959a, b, 1960a); those of class 
(ii) have been considered previously by Brooke Benjamin (1960) and Betchov 
(1961) in connexion with the drag of a flexible body4.g .  a porpoise.? These two 
classes of waves are relatively independent throughout most of the wind speed, 
wavelength spectrum, but resonance between them appears to afford an im- 
portant and interesting possibility for a sharply peaked energy transfer from 
shear flow to surface wave over a limited portion of this spectrum. 

The growth of waves of class (i) is investigated in more detail in $97 and 8, 
and numerical results are presented for the generation of water waves by a shear 
flow having a profile corresponding to the mean flow in a turbulent boundary 
layer (linear at surface and asymptotically logarithmic). These results suggest 
that energy transfer from wind to waves through the action of the viscous Rey- 
nolds stress may be of considerable practical importance. 

c < 2.3(U,/kV,)+ u,, (1.3) 

2. Surface waves on a slightly viscous liquid 
We consider a liquid of densityp, kinematic viscosity v, and surface tensionpcr 

that is bounded below by the rigid plane y = - d and above by the surface wave 

y = y,(z,t) = aeik(x-et) (ka < 11, (2.1) 
-f See also Becker (1960). 
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in the Cartesian co-ordinates x and y. We require the equation of motion for 
this wave under the action of the normal (positive into the liquid) stress po 
and the tangential stress 7 0 ,  which stresses we assume to be generated aero- 
dynamically by a light fluid of density sp and kinematic viscosity v, and to be 

(2.3) expressed in the form 
( ~ 0 , 7 0 )  = ~ P ( P ,  T) YO- 

We also shall pose the restrictions 

where R, is an appropriate Reynolds number for the wave motion in the liquid. 
The restriction (2.3b) justifies the neglect of the shear flow in the liquid, but 
we note that this approximation requires reconsideration for very thin films 
(see Miles 1960b). 

We may derive u and v, the x- and y-components of the velocity in the liquid, 
from a stream function +(y) yo(z, t )  according to 

u = $’(y)yo(x,t), v = -i~$(Y)Yo(x,~)> (2.4a, b )  

(D2-Icz)(Dz-m2)$ = 0, m2= k2-i(kc/vu,), (2.5~1, b )  
where I+? satisfies 

and D@ 3 @‘(y). The kinematic boundary conditions on $ are 

$ = $ ‘ = O  at  y =  - d  and $ ( O ) = c ,  (2.6a, b, c) 

where we have invoked the last condition at  y = 0, rather than y = yo, by virtue 
of the restriction ka < 1. The dynamic boundary conditions (again invoking 
Ica < 1) are 

-p(Y?A 3 P[c$’ -I- ( ~ , / i k )  ($.” - 3k2+’)] yo 

= P(S + CJ-W Yo +PO (2.7) 

and p(””) PJLSV + k2$) YO = 7 0 ,  (2.8) 

where pQy) and p(uu) are components of the Cartesian stress tensor (cf. Lamb 
1945,s 349). 

Neglecting terms of O(e-md)  by virtue of the restriction ( 2 . 3 4 ,  a solution to 
(2.5) that satisfies the kinematic boundary conditions (2.6) is given by 

$ = (c  - A )  [C - (m/k) XI-l(c0sh [k(y + d) ]  

- (m/k) sinh [k(  y + d) ]  - e-m(Y+d)) + A emu, (2.9) 

C = coshkd, X = sinhkd. (2.10) 

where A is an arbitrary constant, W(m> > 0 ,  and 

We remark that the solutions e-m(y+d) and emu are significant only in thin boundary 
layers at  y = - d  and y = 0,  respectively. 

Considering next the determination of A,  we substitute T~ from (2.2) and y? 
from (2.9) into (2.8) to obtain 

A = - 2ikllW + i s ( k ~ ) - l  T .  (2.11) 
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Substituting (2.9) and (3.11) into (2 .7) ,  we then obtain the secular equation for 
the determination of c as a function of k :  

k ( m G c )  (c+ 2ikvw)2 + (3kvw)2m 

= g + ~ k ~ + ~ [ P + i T c o t h k d + O ( R ; ~ ) ] .  (2.12) 

Up to this point, the left-hand side of (2.12) is accurate (as ka -+ 0) within an 
error factor 1 + O( e -ma) .  If we now retain only the dominant terms of algebraic 
order in Ru, as R ,  + cx), we may neglect the term ( 2 k v J 2  m and let 

= coth kd + - csch2 kd + O(R,l). (2.13) (B), 
Introducing the abbreviation (for the speed of undamped, deep-water waves) 

co = (gk-l+crk):, (2.14) 

together with the approximation (2.13), we may transform (2.12) to 

(c + 3ikvuJ2 - ct[tanh kd - (1 + i )  (2R,)-* sech2 kd] = sk-l[P tanh kd + iT]. (2.15) 

Finally, we may reduce (2.15) to 

(c + 2 i k ~ , ) ~  - cg[1- i(8/Rw)* e-2kd] = sk-l(P + iT) (2.16) 

for deep-water waves (say kd > 2). 
We observe that the damping in the boundary layer at  y = - d  is of lower 

order in R, than that in the boundary layer a t  y = 0 (R;* ws R;l) but falls off 
exponentially with kd, and it is for the latter reason that we have not neglected 
2ikvw relative to c in (2.15) and (2.16). The contributions of these two boundary 
layers to the left-hand sides of (2.15) and (2.16) are equal, within the approxima- 
tions of (2.3c, d) ,  if d = D, where 

D = (4k)-llog([cl/2k~,), (2.17) 

and we may neglect the term of O(e-2ka) in (3.16) if d D. (We have already 
neglected the real term of this order by virtue of the less stringent restriction 
kd B 1.) 

We shall require the tangential velocity at y = yo in the form 

u = $;Yo. 

Making use of (2.4a), (2.9), (2.11) and (2.13), we obtain 

(2.18) 

$; = k~cothkd[l+O(R,~)]. (2.19) 

We emphasize that the tangential and normal components of velocity in y < yo 
are equivalent to u and - w, respectively, within an error factor 1 + O(ka). This 
is not generally true in y > yo (see 8 3 below) because of the shear flow there. 
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3. Aerodynamic boundary-value problem 
Brooke Benjamin’s (1959) formulation of the equation governing small per- 

tubations relative to the parallel shear flow U(y) in y > yo leads to the following 
boundary-value problem for the quasi-stream-function F(7) ,  where 7 is a curvi- 
linear co-ordinate defined such that y = yo(x,t) transforms to 7 = 0 within a 
factor 1 + O(ka):T 

(U  - C) (F” - k2F) - U“F = (v, / ik) [Fiv - 2k2F” 

+ k4F + ( Uiv - 3k U”’) e-kq], (3.1) 

Fo = C, FA = $;- U;. (3.3) 

Here and subsequently, the subscript zero denotes evaluation at  7 = 0, U = U(q) ,  
and @;yo denotes the tangential velocity at 7 = 0 (cf. (2.18) and (2.19)). We also 
introduce the subscript c to denote evaluation at  the critical layer 7 = yc, where 

U(7J = c* (3.3) 

An appropriate characteristic length for the critical layer is 

6 = (v, /Ul.k)),  

E = k6 = (v, k2/ i7l.p 
and if the parameter 

is sufficiently small the right-hand side of (3.1) is important only in the neigh- 
bourhoods 7 = rC+O(6) and 7 = O(6). Moreover, previous studies of energy 
transfer from shear flows to surface waves (Brooke Benjamin 1959; Miles 1959a) 
have indicated that aerodynamic viscous effects are likely to be significant only 
if qc = 0(6),  in which case we need not distinguish between the neighbourhoods 
of 7 = vC and 7 = 0 in considering these effects. The asymptotic solution to (3.1) 
as e -+ 0 then is given by (Lin 1955, $Q 3.4 and 3.6) 

F(7) = #(7) +f(7), (3.6) 

(3.7) 

where #(7) satisfies the inviscid Orr-Sommerfeld equation 

(77- c) ( $ I t  - k2#) - Un# = 0, 

the viscous solutionf(7) is given by 

C is an undetermined constant, and 

2 = yc/s .i- c p ; s  

y =  -cu:/u;2 

(3-9) 

is an appropriate measure of the wave speed c for the viscous solution. We also 

(3.10) 
introduce the parameter 

t Brooke Benjamin’s formulation was dimensionless, but otherwise (3.1) is identical 
with his (3.1). A sign error in his (2.9) has been corrected and /3 replaced by @A to  obtain 
(3.2) above. 
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as an appropriate measure of profile curvature and remark that the approxima- 
tion (3.8) to the viscous solutionf(q) is valid only for y < 1. Lin (1955, $8.7) 
has shown how (3.8) may be rendered valid for non-small values of y through a 
re-definition of z ,  but this extension does not appear to be worthwhile for the 
applications contemplated herein. 

4. Surface stresses 
Neglecting terms of O(e2) compared with unity (as is consistent with the 

asymptotic approximation of the preceding section), we may approximate the 
normal stress at  y = yo by the aerodynamic pressure and calculate the parameters 
of (2.2) according to (Brooke Benjamin 1959)t 

and invoking the boundary conditions (3.2) on the solution (3.6), we may 
solve for P and T in the forms 

and T = -EGP. (4.7) 

The function 9 ( z )  has been plotted and tabulated for z = 1.0 (0.2) 5-0 by Lin 
(1955, p. 41) and for x = - 6.0 (0.1) 10.0 by Miles (1960b). Approximations for 
small and large are 

9 ( z )  = 1.388 e-5in/6 z + 0.686 e-2tn/3 x2 + 0 ( z 3 )  ( 4 . 8 ~ )  

and (4.8b) 

The function G(z )  may be expressed in terms of the Airy integral of the &st kind 
according to 

G(z )  = e--2in/3Ai(~e-5in/6)/Ai’(~e-5inis) (4 .9~)  

N 1 + ein14 2-8 + ziz-3 + o(x+?). 

(P.9b) 

and - z-* - I z -  4 8  2+0(z-$) .  (4.9c) 

The real and imaginary parts of G are plotted in figure 1. 

t Equation (4.1) follows from Brooke Benjamin’s (3.12) after identifying the latter as 
an invariant of the inviscid differential equation within the approximations already im- 
posed. Equation (4.2) follows from Brooke Benjamin’s (2.12) and (2.16) after invoking 
his boundary conditions (2.7) and (2.8) and neglecting terms of O(e2). 
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FIGURE 1. The real and imaginary parts of G(z), as given by (4.9). 

5. Inviscid solution 
The well known method of Heisenberg (Lin 1955, €j 3.4) for the solution of the 

differential equation (3.7) is not generally suitable for the profiles of interest in 
the present context. A more powerful procedure is to introduce the new depen- 
dent variable 

which satisfies the Riccati equation 

Q ( J )  = ( u - c)-l[ U'$ - ( u - c )  $ ' I 4  $, (5.1) 

Q' = k2(U-c)2Q2-(U--c) -2 .  (5 .2)  

We then may show that (Miles 1962) 

where the subscript 1 implies evaluation at the point J = T~ defined such that 

kl%l < k J l <  1, IU,-cl B CiY (5.44 b )  

and the path of integration passes under 7 = yC. This approximation implies 
(cf. Lin 1955, p. 37) 

wi = .( G/UL) O(kJ7cJ 121. (5.5) 
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6. Eigenvalue problem 
It now remains to determine the complex wave speed c as a function of the 

(real) wave-number k for prescribed values of the remaining parameters (s, 6, 

etc.). Combining (2.15), (2.19), (4.6) and (4.7), we obtain the eigenvalue equation 

(c + 3 i k ~ , , , ) ~  - cE[tanh kd - (1 + i )  (2R,)-4 sech2 kd] 

tanh kd + & ( x )  + O(@) 
k 9 ( 2 )  - w(k,  c)- 

where (letting UL + UA in the coefficient of 9- 1) 

H(2) = 219- 1) - iG (6.2a) 

- - 1.372 e - h / 6  + 0.35 e--5fn/6 22 + O(z3) (6.20) 

and - zein14 2-4 + O(2-2). ( 6 . 2 ~ )  

We remark that the term &(z)  may be significant, even for small c,  if either 
d is not large compared with 6 or the contribution of €Hi to the imaginary part 
of the right-hand side of (6.1) is comparable with the other contributions to that 
imaginary part. We also remark that, in accordance with (4.8a) and (5.3), both 
9 and w vanish like c as c -+ 0, in consequence of which the right-hand side of 
(6.1) is finite in this limit. 

Let us consider first the limiting behaviour of c as s + 0 with Uh fixed. Then, 
either the left-hand side of (6.1) or F - u j  in the denominator of the right-hand 
side must van i shsay  either c = c1 or c = c,, where (for waves running in the 
positive-x direction) 

c1 = co(tanh kd): - (1 + i )  (kv,c0/2)4 (tanh kd) i  csch 2kd 

and 

- 2ikv,+ O(R$, R,l C S C ~  2kd), (6.3) 

9 ( c 2 / u ; 6 )  = w(k, c2). (6.4) 

The wave speed c1 corresponds to free-surface waves damped by viscous stresses 
in the boundary layers at y = yo and y = -d,  which yield the contributions 
- 2ikv, and - (1 + i )  (kv,c,/2)* (tanh kd) t  csch 3kd, respectively. The wave speed 
c2 corresponds to the Tollmien-Schlichting waves (not necessarily neutral) associ- 
ated with small perturbations of the basic shear flow U(y) over the rigid plane 
y = 0. 

Now let us consider the first-order (in s) perturbations of c1 and c2 on the 
provisional hypothesis that those perturbations are small. The results are 

x {(c, + 2 i k ~ , ) ~  - c,2[tanh kd - (1 + i )  (kv,/2c2)4 sech2 kd])" (6.6) 

within the approximations already imposed. The result (6.5) generalizes previous 
results of Brooke Benjamin (1959) and Miles (1957a, 1 9 5 9 ~ ) ;  (6.6) generalizes 
previous results of Brooke Benjamin (1960) and Betchov (1961). 
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The approximations (6.5) and (6.6) break down if either (a) the air speed is so 
high that sUA/k is of the same order of magnitude as c1 or (b) c2 approximates 
cl. The contingency (a) corresponds to Kelvin-Helmholtz or static instability 
and will not be considered further here (see Miles 19593). The contingency (b) 
corresponds to resonance between the free-surface waves of the lower medium and 
the Tollmien-Schlichting waves associated with the shear flow in the upper 
medium. The latter contingency requires both the left-hand side and the denomi- 
nator of the right-hand side of (6.1) to be expanded about either c = c1 or c = c2 
to obtain a quadratic equation in either c - c1 or c - c2. An explicit exploration 
of this neighbourhood leads to rather involved algebraic expressions and requires 

1 

0.75 

8 0.5 

9.25 

0 
lo3 

(Water) 1 
Free-surface waves 

\ I 

Waves 

I 
I 1 

lo4 

CtR 
lo5 

FIGURE 2. The neutral dispersion curve of Tollmien-Schlichting waves for a Blasius 
boundary layer compared with the neutral curve for deep-water waves; see (6.8) and (6.9). 

the calculation of aw/ac, but it is evident that the interaction between the free- 
surface and Tollmien-Schlichting waves increases from O(s) to O ( d )  as c1 - c2 -+ 0. 

We shall illustrate this last possibility by considering the known results for 
the stability of a Blasius boundary layer under zero pressure gradient. Using 
Lin’s (1946) results for neutral Tollmien-Schlichting waves, we obtain the dis- 
persion curve c/U,vsaR of figure 2. In  Lin’s notation, a is a dimensionless 
wave-number based on the nominal thickness of the boundary layer, such that 

aR = 361Cx, (6.7) 

where x is the distance from the leading edge of the boundary layer. We may 
compare this dispersion curve with that for deep-water waves, rewriting (2.14) 
in the form 

which is plotted in figure 2 for g = 980, x = 100, U, = 100 and CT = 73, all in 
c.g.s. units. Increasing x would move this curve to the right (linearly with x on a 
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linear scale, but aR has a logarithmic scale in figure 2), while increasing U, would 
move it down. Allowing for finite depth also would move it down, but asym- 
metrically, tending to flatten the left-hand, or gravity wave, branch. 

7. Growth of deep-water waves 
We now consider the growth of surface waves on the basis of the approxima- 

tion (6.5) together with the additional restriction kd $ 1. Taking the imaginary 
part of (6.5) and multiplying through by k, we obtain the growth factor 

6 = kci = 6w + 6a, (7.1) 

where = - 2k2vW - (2k3vw~0)* e-2kd (7.2) 

and 

I I 

Jc=c, 

1 
2 

1 

0 

- 1  
0 1 2 3 

( 7 . 3 ~ )  

(7.3b) 

2 

FIGURE 3. The functions T&), - z ( z )  and -a&). 

We have neglected kSH, compared with 1 but retained kSH, in (7.3b) against the 
contingency 1 w, - ST\ 9 1 wi - Ff\. We also could neglect the second, or bottom- 
damping, term in (7.2) if d $ D ;  see the discussion following (2.16). 

The functions ST(z ) ,  -Fi(x) and Hi(x) are plotted in figure 3. As remarked 
originally by Brooke Benjamin (1959), the term - K(z) yields a positive 
energy transfer to the surface wave for 0 < z < 2.3. To this, we may add an ad- 
ditional energy transfer from the term - Hi if 0 < z < 3.1 and w, > *? (the latter 
condition is likely to be satisfied for most configurations). 
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To focus attention on that range of wind speeds for which energy transfer 
through viscous phase shifts is significant, we introduce the friction velocity 
U, according to 

where r is the steady shear stress exerted by the shear flow U(y) on y = 0. 
Substituting (7.4) into (3.9) and (3.4) and solving for U,, we obtain 

v, Uh = Ug = r/sp, 

CJ, = (2m,)*z-B ha ct, 

(7-4) 

( 7 . 5 )  

where h = 2 r / k  denotes the wavelength. Assuming air over water ( 1 7 ,  = 0.154, 
g = 980, = 73c.g.s. units), U, is plotted us h in figure 4 for z = 1 (corre- 
sponding to the maxima of -Ff and, very closely, -Hi) and z = 3-3 (% = 0 
and Hi + 0). The minimum of the lower curve occurs at  U, = 4*4cm/sec and 
h = 3.8cm. 

(cm) 

FIGURE 4. The lower curve gives the minimum wind speed for viscous energy transfer 
to deep-water gravity waves; the upper curve gives the order of magnitude of the wind 
speed for maximum, viscous energy transfer; see (7.5). 

If U, is appreciably in excess of the upper curve in figure 4, we may approxi- 
mate % and Hi in (7.3) according to the leading terms of ( 4 . 8 ~ ~ )  and (6 .2b )  and 
neglect wi (which vanishes more rapidly than c /U ,  as z --f 0) to obtain 

6 = ~ U ~ ~ - ~ ( 0 * 3 2 2 ~ + 0 - 3 4 3 k & ~ )  

We shall not be directly interested in the rhgime z > 3.3, but we note in passing 
that substituting the asymptotic approximations (4 .8b)  and ( 6 . 2 ~ )  into (7.3) 
and retaining only the dominant terms yields 

(7.7) 
w. - ( V , k / 2 C O ) *  [( U:/kc,) + 2(w,- l)] 

(w, - 1 ) 2  + w; -1- 6 = 1  .(-% 
a N o  

This is in agreement with the writer's previous result (Miles 1959a, (4.7)) within 
the order of the approximations invoked there. 
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8. Numerical results for mean turbulent profile 
We may apply the foregoing results to the generation of water waves by wind 

on the hypothesis that the mean velocity in the turbulent boundary layer may be 
regarded as a parallel shear flow, together with the hypotheses ( 5 . 4 ~ )  b). We also 
shall assume that the velocity profile is linear in (0 ,  rl) according to 

(8.1) U(71) = ( U $ / V a ) 7 ,  0 6 7 6 71 < l /k .  
We then have y = wi = 0, and the energy transfer from shear flow to surface 
wave is associated entirely with the viscous Reynolds stress in the immediate 
neighbourhood of the air-water interface. We remark that the mean flow in this 
neighbourhood is approximately laminar, and hence that the neglect of the 
surface-wave induced perturbations of the turbulent Reynolds stresses in the 
boundary layer (see Miles 1957a) is relatively less important than in the corre- 
sponding calculation of the inviscid Reynolds stress. To be sure, these perturba- 
tions still are neglected in the calculation of w,, but the success of the closely 
related model for Kelvin-Helmholtz instability (Miles 1959 b) suggests that this 
is not likely to be too serious. 

The differential equation (5.2) has been integrated numerically in 7 > y1 
for a velocity profile that fairs smoothly into that of (8.1) and is asymptotically 
logarithmic according to 

V(v) N q+? ~ o g ( ~ ) - l + O ( ~ ) ]  

= u* -log (7) ~ +c . 
K 

( 8 . 2 ~ )  

(8.2b) 

This profile, based on a modification of Prandtl's mixing-length model for the 
turbulent boundary layer over a smooth rigid wall, agrees with observation if 
K is taken to be 0.4 and U,/U, about 6.6 (as inferred from the experimental deter- 
mination of C), but there is some evidence for larger values of U, for aerodynamic- 
ally smooth flow over water (see the discussion in Miles 1957 6). 

The subroutine for this integration, together with a previously available 
subroutine for the determination of P ( z ) ,  G(z), and H(z )  through the integration 
of Airy's equation (Miles 1960b), has been used to determine <a according to 
(7.3) for K = 0.4, va = 0-15, g = 980, (T = 73, C< = 5 and 8, and various values of 
U,, all in c.g.s. units. The results are presented in figures 5a, b. The deep-water 
(kd-+co)  damping term {?fl = 3Ic2vW also is plotted for comparison; the actual 
growth rate for deep-water waves is proportional to the difference <a - <,L,. 
Damping curves for water of finite depth would lie above that shown as -{[,, 
in figures 5a, b and could be calculated from (7.2) for Icd > 2. 

The aforementioned subroutine also was used to solve the eigenvalue equation 
(6.4). The implicit assumption wi = 0 then requires = 0, whichimplies z = 2.3 
and ST = 3.3, and we may reduce (6.4) to the solution of 

( 8 . 3 ~ )  

and (8.3b) 
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where W is defined as in Miles (1962). The results for R2 and c2/U, are plotted 
ws U,/U, in figure 6for K = 0.4. Equating c2 to c,(k), as given by (2.14) then yields 
a first approximation to the resonance condition between the natural oscillations 

" 0  1 2  3 4 5 6 7 8 9 10 

A (em) 

( b )  

FIGURE 5. The growth rates for deep-water waves due to a turbulent wind having 
the mean velocity profile described by (8.1) and (8.2). (a)  U, = 5U,; (b )  U, = SU,. 

associated with the mean wind profile and deep-water waves on a free surface. 
The simultaneous values of h and U, implied by this resonance, assuming the 
previously listed numerical values of the various physical constants, are plotted 
ws U,/U, in figure 7. The minimum value of U, is 4-4cm/sec, in agreement with 
the lower curve of figure 4. 

With one exception, the calculated peaks in the ca ws h curves of figures 5a, b 
appear to be closely associated with the realization of the maximum possible 



I I I I 

6 7 8 9 10 5 

u&J* 
FIGURE 6. The solution of (6.4) for the mean velocity profile described by (8.1) 

and (8.2). 

FIGURE 7. The simultaneous Values of U ,  and h amooiated with i-esvnance of cloup-wa*or 

waves with the natural oscillations of the mean velocity profile described by (8.1) and (5.2). 
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values of -Fi(z) for the specified values of U,. The peak at  h = 5.5 em and 
U, = 5 cm/sec in figure 5 b closely approximates the resonant point of h = 4.7 em 
and U, = 4*5cm/sec, however, and therefore appears to be a resonant peak in 
the sense of the preceding discussion. It also appears likely that there exists a 
rather narrow range of U%, for given U,/U,, in which the us h curves would 
exhibit much stronger and sharper peaks than those shown in figure 5, in conse- 
quence of which the results presented there may be misleading. The writer 
hopes t o  explore this conjecture further. 

in figure 5 b  for U, = 4.5 cm/sec is found to be 0.84 at 
h = 4.7 em. This implies that the amplitude of 4.7 em waves actually will 
decrease as the windspeed is increased in the neighbourhood of U, = 4.5 cm/sec 
if U = SU, ; but of course this does not imply that the r.m.s. amplitude of the 
total spectrum would decrease. 

The peak value of 

This work was supported by the Office of Naval Research under contract 
Nonr 333 (70). 
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